## SFP Transceiver 1.25 Gbps Extended Temp. Range

# **MICROSENS**

#### Description

The actual SFP transceivers from MICROSENS offer an optical transmission over multimode or single mode fiber. Depending on the model the transceiver can cover distances up to 120 km.

The SFP (Small Form Factor Pluggable) is based on the same principle as the GBIC. The main difference is the size of the transceiver with only half of the width (mechanical dimensions) due to the use of the LC connector.

The optical transceiver from MICROSENS comply to the SFP specifications Revision 5.4.. Additional they are compliant to the Gigabit Ethernet specifications according IEEE Std. 802.3®, the Fibre Channel specifications FC-PH, PH2, PH3, FC-PI 10.0 and all common ATM (OC-12, OC-48) and Sonet (SDH STM-4, SDH STM-16) standards.

The transceivers are available with different wavelengths. For multimode applications such as Gigabit Ethernet, Fibre Channel or Double Rate Fibre Channel VCSEL lasers with a wavelength of 850 nm are used. This allows to realise distances up to 550 m using a 50/125 µm multimode fiber.

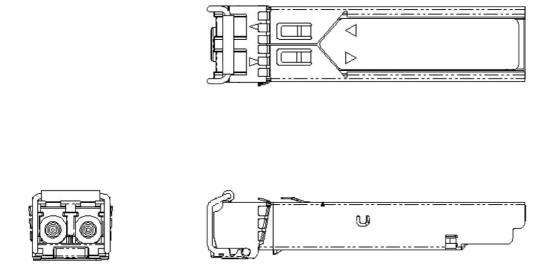
For single mode applications there are FP and DFB lasers with the wavelengths of 1310 and 1550 nm available. Depending on the model it is possible to cover distances from 10 km up to 120 km. The transceivers offer the highest flexibility and can be installed during operation (hot swap).

#### **Technical Specifications**

| Туре                  | SFP (Small Form Factor Pluggable) Transceiver for data transmission up to Gigabit speed |
|-----------------------|-----------------------------------------------------------------------------------------|
| Fiber type            | Single Mode 9/125 µm duplex, LC-connector                                               |
| Data Rates            | 1.0625 Gbps to 1.25 Gbps                                                                |
| Standards             | CDRH and IEC 825-1 class 1 eye safety                                                   |
| Operating temperature | -40°C up to +85° C                                                                      |
| Supply Voltage        | 3.3 V                                                                                   |

## **Detailed optical Parameters**

| PARAMETER                              | SYMBOL                    | MIN                | TYP.                 | MAX  | UNITS | NOTE    |
|----------------------------------------|---------------------------|--------------------|----------------------|------|-------|---------|
| Output Optical Power<br>9/125 μm fiber | Pout                      | -9                 | 10000                | -3   | dBm   | Average |
| Extinction Ratio                       | ER                        | 9                  |                      |      | dB    |         |
| Center Wavelength                      | $\lambda_{C}$             | 1280               | 1310                 | 1355 | nm    |         |
| Spectral Width (RMS)                   | Δλ                        | 1000               | ( <del>3797</del> 4) | 2.5  | nm    |         |
| Rise/Fall Time, (20–80%)               | $T_{n,f}$                 | (2222)             | 1000                 | 260  | ps    |         |
| Relative Intensity Noise               | RIN                       | 1 <del>385</del> 1 | -                    | -120 | dB/Hz |         |
| Total Jitter                           | TJ                        | -                  |                      | 227  | ps    |         |
| Output Eye                             | Compliant with IEEE802.3z |                    |                      |      |       |         |
| Max. Pout TX-DISABLE Asserted          | P <sub>OFF</sub>          |                    |                      | -45  | dBm   |         |
| Differential Input Voltage             | V <sub>DIFF</sub>         | 0.4                | 1000                 | 2.0  | v     |         |


#### Transmitter Electro-optical Characteristics

#### **Receiver Electro-optical Characteristics**

 $V_{cc} = 3.1 \text{ V to } 3.5 \text{ V}, T_{c} = 0 \degree \text{C to } 70 \degree \text{C} (-40 \degree \text{C to } 85 \degree \text{C})$ 

| PARAMETER                                      | SYMBOL              | MIN  | TYP.  | MAX             | UNITS | NOTE                    |
|------------------------------------------------|---------------------|------|-------|-----------------|-------|-------------------------|
| Optical Input Power-maximum                    | $P_{IN}$            | -3   |       | 1               | dBm   | BER < 10 <sup>-12</sup> |
| Optical Input Power-minimum<br>(Sensitivity)   | $P_{IN}$            |      | -26   | -21             | dBm   | BER < 10 <sup>-12</sup> |
| Operating Center Wavelength                    | $\lambda_{C}$       | 1260 |       | 1610            | nm    |                         |
| Optical Return Loss                            | ORL                 | 12   |       | 3775            | dB    |                         |
| Signal Detect-Asserted                         | $P_A$               |      |       | -21             | dBm   |                         |
| Signal Detect-Deasserted                       | $P_D$               | -35  | 122   | 1222            | dBm   |                         |
| Differential Output Voltage                    | VDIFF               | 0.5  |       | 1.2             | v     |                         |
| Data Output Rise, Fall Time<br>(20–80%)        | Trf                 |      |       | 0.35            | ns    |                         |
| Receiver Loss of Signal Output<br>Voltage-Low  | RX_LOSL             | 0    | 1222  | 0.5             | v     |                         |
| Receiver Loss of Signal Output<br>Voltage-High | RX_LOS <sub>H</sub> | 2.4  | 1.555 | V <sub>cc</sub> | v     |                         |

#### Construction



#### **Diagnostic Function (optional)**

Optional the transceivers are available with Diagnostic function (Extension of article number with "D", e.g. MS100200D), to monitor detailed all operating information.

This offers to read information such as optical transmit power, receive power, the optical budget, the resulting possible distances and the real used data rate via the management system.

This feature is particular useful in combination with the MICROSENS xWDM systems, because it increases the functionality significant.

#### **Eye Safety**

## Attention: Visible and invisible light emitted from fiber optical component may cause permanent damage to your eyes!

To avoid damage to the eyes

- never look straight into the output of fiber optic components danger of blinding!
- cover all unused optical connections with caps.
- commission the transmission link only after completing all connections.

The active laser components used with this product comply with the provisions of Laser Class 1.

### **Order Information**

| ArtNo.     | Description                                                                                                                                                            | Connectors |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| MS100210DX | SFP, Gigabit Ethernet / Fibre Channel<br>1310 nm Single Mode Transceiver, max. 1.25 Gbps, min. 10 km<br>extended temp. range -40 to +85 degrees, diagnostics interface | LC duplex  |

\*) Option "D" for Diagnostic Function (e.g. MS100200D)

\*) Option "X" for extended Temperature -40°C up to +85°C (e.g. MS100200DX)

MICROSENS reserves the right to make any changes without further notice to any product to improve reliability, function or design. MICROSENS does not assume any liability arising out of the application or use of any product. 0511/He